US 2004/0034850 Al

SERVICING A COMPONENT-BASED SOFTWARE
PRODUCT THROUGHOUT THE SOFTWARE
PRODUCT LIFECYCLE

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application is a continuation-in-part of co-
pending U.S. patent application Ser. No. 09/561,389, filed
Apr. 27, 2000, entitled “A COMPONENTIZED OPERAT-
ING SYSTEM,” which is hereby incorporated herein by
reference in its entirety for all purposes.

TECHNICAL FIELD

[0002] Embodiments of the present invention relate to the
field of servicing software products. In particular, embodi-
ments of this invention relate to updating component-based
operating systems and application programs with a service
package throughout the software product lifecycle.

BACKGROUND OF THE INVENTION

[0003] An operating system image interacts with hardware
in a computer to perform a multitude of functions. Conven-
tional computers generally execute the operating system to
manage various aspects of the computer as it is running.
Typically, the operating system is responsible for managing
access to storage devices as well as input and/or output
devices, and controlling the execution of one or more
additional applications. Before the operating system may be
executed by the computer, it typically must be installed on
the computer, a process which usually involves copying
multiple files from a distribution medium (e.g., a CDROM)
onto a storage device (e.g., a hard disk) of the computer.

[0004] A typical operating system includes a large number
of files which may include instructions and/or data. These
instructions, when executed by the computer, provide the
operating system functionality. The operating system may be
modified (e.g., updated) in any of a wide variety of manners,
such as by adding or replacing one or more particular files,
by any of a wide variety of people (e.g., a user, administra-
tor, software developer other than the operating system
developer, ete.). It becomes difficult to troubleshoot a mal-
functioning computer or update the operating system
because it is difficult for the user or administrator to know
exactly what functionality is or should be installed on the
computer.

[0005] In existing systems, servicing the binary files that
comprise a software product (e.g., the operating system or an
application program) is often the most expensive aspect of
a software product lifecycle. An exemplary software product
lifecycle includes a pre-deployment phase (e.g., pre-instal-
lation), a deployment phase (e.g., installation), and a post-
deployment phase (e.g., on the running system). The size of
the binary files, the amount of binary files that are typically
serviced for any single problem, and the different locations
of the binary files during each of the software product
lifecycle phases make the distribution and creation of the
binary files difficult. Also, servicing multiple binaries across
the system fails to provide specific information on the
current version of any larger aggregated piece of function-
ality on the system.

[0006] For example, when creating a service package to
remedy an issue in software code stored in a binary file,

Feb. 19, 2004

existing systems typically create an updated copy of the
binary or a patch that modifies the software code without
modifying other software. However, existing systems typi-
cally require different versions of both the patches and the
binary files based on the current phase of the software
product lifecycle: one version for pre-deployment, one ver-
sion for during deployment, and one version for the running
system.

[0007] In another example, some prior systems provide a
“hot” fix (e.g., a patch) for the end user that replaces a single
file or library (e.g., library.dll) on a running system or during
predeployment. Other systems provide updates during
installation by directing the client machine to obtain the
updated file or library (e.g., library.dll) from an installation
medium or via a network and install the obtained update.
However, such systems require separate scripts for each
lifecycle phase of the client machine: pre-deployment,
deployment, and post-deployment. Further, a change to a
single file may necessitate a change to other dependent files.
The prior systems fail to provide for intelligent dependency
resolution during the update process.

[0008] Accordingly, a system for servicing a software
product across the entire software product lifecycle is
desired to address one or more of these and other disadvan-
tages.

SUMMARY OF THE INVENTION

[0009] Embodiments of the invention include updating a
software product with a service package. The service pack-
age includes one or more files associated with the compo-
nent and a plurality of instruction sets for installing the files.
In an embodiment, the invention determines a state or other
operating context associated with the component, selects
one of the instruction sets based on the determined state, and
applies one or more of the files to the component in
accordance with the selected instruction set. For example,
the state may correspond to one of the following phases of
a software product lifecycle: predeployment of the software
product, deployment of the software product, and post-
deployment of the software product.

[0010] The invention provides a single service package to
both consumers and original equipment manufacturers to
service a software product during all parts of the software
product lifecycle. As software products have more and more
binaries to service, the invention reduces the cost of servic-
ing and enables a simple query of the system to determine
the version of binaries serviced on the system.

[0011] In accordance with one aspect of the invention, a
computerized method updates a software product. The
method includes defining the software product as a plurality
of components. The method also includes accessing one of
a plurality of instruction sets associated with a service
package based on a lifecycle phase of the software product
to be updated. The method also includes modifying at least
one of the components in the software product in accordance
with the accessed instruction set.

[0012] In accordance with another aspect of the invention,
a method updates a software product with a service package.
The software product includes a plurality of components.
Each of the components has a state associated therewith. The
state represents an operating context of the component. The



